Examinando por Autor "Andreo, Carlos Santiago"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Acceso Abierto Deciphering the metabolic pathways influencing heat and cold responses during post-harvest physiology of peach fruit(Wiley, 2014-01-21) Lauxmann, Martín Alexander; Borsani, Julia; Osorio, Sonia; Lombardo, Verónica Andrea; Budde, Claudio O.; Bustamante, Claudia Anabel; Monti, Laura Lucía; Andreo, Carlos Santiago; Fernie, Alisdair R.; Drincovich, María Fabiana; Lara, María ValeriaPeaches are highly perishable and deteriorate quickly at ambient temperature. Cold storage is commonly used to prevent fruit decay; however, it affects fruit quality causing physiological disorders collectively termed ‘chilling injury’ (CI). To prevent or ameliorate CI, heat treatment is often applied prior to cold storage. In the present work, metabolic profiling was performed to determine the metabolic dynamics associated with the induction of acquired CI tolerance in response to heat shock. ‘Dixiland’ peach fruits exposed to 39 °C, cold stored, or after a combined treatment of heat and cold, were compared with fruits ripening at 20 °C. Dramatic changes in the levels of compatible solutes such as galactinol and raffinose were observed, while amino acid precursors of the phenylpropanoid pathway were also modified due to the stress treatments, as was the polyamine putrescine. The observed responses towards temperature stress in peaches are composed of both common and specific response mechanisms to heat and cold, but also of more general adaptive responses that confer strategic advantages in adverse conditions such as biotic stresses. The identification of such key metabolites, which prime the fruit to cope with different stress situations, will likely greatly accelerate the design and the improvement of plant breeding programs.Ítem Acceso Abierto Transcriptional and metabolic changes associated to the infection by fusarium verticillioides in maize inbreds with contrasting ear rot resistance(Public Library of Science (PLOS), 2013-04-18) Campos Bermúdez, Valeria Alina; Fauguel, Carolina M.; Tronconi, Marcos A.; Casati, Paula; Presello, Daniel A.; Andreo, Carlos SantiagoFusarium verticillioides causes ear rot and grain mycotoxins in maize (Zea mays L.), which are harmful to human and animal health. Breeding and growing less susceptible plant genotypes is one alternative to reduce these detrimental effects. A better understanding of the resistance mechanisms would facilitate the implementation of strategic molecular agriculture to breeding of resistant germplasm. Our aim was to identify genes and metabolites that may be related to the Fusarium reaction in a resistant (L4637) and a susceptible (L4674) inbred. Gene expression data were obtained from microarray hybridizations in inoculated and non-inoculated kernels from both inbreds. Fungal inoculation did not produce considerable changes in gene expression and metabolites in L4637. Defense-related genes changed in L4674 kernels, responding specifically to the pathogen infection. These results indicate that L4637 resistance may be mainly due to constitutive defense mechanisms preventing fungal infection. These mechanisms seem to be poorly expressed in L4674; and despite the inoculation activate a defense response; this is not enough to prevent the disease progress in this susceptible line. Through this study, a global view of differential genes expressed and metabolites accumulated during resistance and susceptibility to F. verticillioides inoculation has been obtained, giving additional information about the mechanisms and pathways conferring resistance to this important disease in maize.