FCEIA-ECEN-DCC- Trabajos Finales de Grado (trabajos finales, proyectos y tesinas)
URI permanente para esta colección
Examinar
Examinando FCEIA-ECEN-DCC- Trabajos Finales de Grado (trabajos finales, proyectos y tesinas) por Materia "aprendizaje automatizado"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Acceso Abierto Detección de ataques maliciosos con aprendizaje automatizado(2018-07) Perrone, Gustavo Andrés; Grieco, Gustavo; Grinblat, GuillermoAño a año nuestras vidas dependen cada vez más de la tecnología, y de estar conectados a través de Internet. Progresivamente más y más objetos se conectan a Internet para facilitarnos diferentes funcionalidades. Celulares, autos, heladeras, cuentas bancarias, luces, casas, cámaras, televisores, etc. Estas conexiones nos brindan muchas ventajas y facilidades, pero a su vez aumentan la vulnerabilidad frente a ataques cibernéticos maliciosos. Estos pueden hacer caer sistemas, causar perdidas de datos, robar información privada, mover dinero, y muchos otros problemas. En los últimos años han surgido nuevos ataques sofisticado, persistentes y con objetivos concretos. Estas nuevas amenazas son denominadas Advanced Persistent Threats (Amenazas Persistentes y Avanzadas), también llamados APT. Estos ataques pueden perseguir objetivos económicos (espionaje), militares (búsquedas de debilidades, revelación de información), técnicos (credenciales, código fuente) o políticos (provocar desestabilización o desorganización, debilitar misiones diplomáticas). En vista de esta situación, y con el propósito de detectar y protegerse de estos ataques, ya no alcanza con programas tales como sistemas de detección de intrusos o antivirus que utilizan sistemas de reglas para detectar amenazas conocidas, si no que es necesario intentar prever lo desconocido. Día a día se investigan nuevas formas de detectar y prevenir amenazas en la red, generalmente utilizando técnicas de Aprendizaje Automatizado. Desgraciadamente, la detección de estos ataques altamente dirigidos requiere de grandes cantidades de datos que no están disponibles públicamente. Es por eso que esta tesina se centra en la detección de tráfico malicioso más general. Pero ¿qué técnicas son realmente efectivas en la práctica?, ¿son realmente implementables?, ¿qué se necesita para utilizarlas con éxito? En este trabajo muestro los resultados de investigar, probar y analizar varios de los algoritmos publicados, comprobando si son realmente aptos para utilizarse en situaciones reales.Ítem Acceso Abierto Selección de variables en problemas anchos con alta correlación(Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Universidad Nacional de Rosario, 2014-05-16) Di Masso, Mauro; Granitto, Pablo M.El aprendizaje automatizado es un área de la inteligencia artificial que ha estado en auge desde hace ya varios años. Su utilidad en la creación de modelos de predicción en base a observaciones ha generado el surgimiento de múltiples métodos de entrenamiento. Sin embargo, la complejidad de los problemas de hoy en día los hace impracticables por el mero número de variables en juego (problemas anchos). Los métodos de selección de variables ayudan a corregir esto eliminando de la ecuación variables irrelevantes y redundantes que dificultan tanto el modelado como su interpretación. En esta tesina se analiza la problemática de la correlación entre variables en problemas anchos considerando algoritmos recientes y se presenta uno propio, teniendo no sólo en cuenta la selección de variables independientes y relevantes sino también la estabilidad de la misma.