SITIO DE TEST - SITIO DE TEST - SITIO DE TEST - SITIO DE TEST - SITIO DE TEST - SITIO DE TEST - SITIO DE TEST - SITIO DE TEST - SITIO DE TEST
 

Appendix and source code of ACP solver for the paper On the additive chromatic number of several families of graphs

dc.citation.titleSeverin, Daniel (2020), “Appendix and source code of ACP solver for the paper On the additive chromatic number of several families of graphs”, Mendeley Data, V1, doi: 10.17632/9zwm2nxvbs.1 http://dx.doi.org/10.17632/9zwm2nxvbs.1
dc.creatorSeverín, Daniel Esteban
dc.date.accessioned2020-09-21T19:47:39Z
dc.date.available2020-09-21T19:47:39Z
dc.date.issued2020-02-12
dc.descriptionThis folder contains a source code for solving the ADDITIVE COLORING PROBLEM as well as testing the ADDITIVE COLORING CONJECTURE. In addition, it contains the appendix of the paper "On the additive chromatic number of several families of graphs" with proofs of some propositions, the integer programming model and some computational experiments.es
dc.descriptionSteps to reproduce The programs ACOPT, TEST and DSATUR should be compiled with Visual Studio 2013. The programs also require IBM ILOG CPLEX 12.6. Below, some examples are given. Testing the additive coloring conjecture on all graphs of 4 vertices: test.exe graphs4.all Recall that acopt.exe and dsatur.exe must be present in the same folder. Also, acopt must be compiled without "VERBOSE" definition (just comment that line in source code). Since "test" generates several files on-the-fly and makes heavy use of the hard disk, it is advisable to execute it on a RamDisk. Obtaining the additive chromatic number of a graph, e.g. the cycle sun with m = 10, and assuming an upper bound UB = 8: acopt.exe CS10.graph 8 If none upper bound is provided, it uses UB = Delta(G)^2-Delta(G)+1 by default (which is really bad!). A lower bound LB can also be provided together with UB. For example: acopt.exe KS10.graph 10 4 In particular, for obtaining an additive k-coloring for a specific k, use UB = LB = k. It is recommended to compile acopt with "VERBOSE" definition for viewing log and optimal solution.es
dc.description.filFil: Severín, Daniel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Rosario; Argentinaes
dc.description.sponsorshipThis work was partially supported by grants PID-ING 416 (UNR), PICT-2013-0586 (MINCyT) and PIP 11220120100277 (CONICET)es
dc.formatapplication/octet-stream
dc.formatapplication/pdf
dc.formatapplication/octet-stream
dc.formatapplication/octet-stream
dc.formatapplication/octet-stream
dc.formatapplication/octet-stream
dc.formatapplication/octet-stream
dc.formatapplication/octet-stream
dc.formatapplication/octet-stream
dc.formatapplication/octet-stream
dc.formatapplication/octet-stream
dc.formatapplication/octet-stream
dc.formatapplication/octet-stream
dc.formatapplication/octet-stream
dc.formatapplication/octet-stream
dc.identifier.urihttp://hdl.handle.net/2133/18976
dc.language.isoenges
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/10.17632/9zwm2nxvbs.1
dc.relation.publisherversionhttps://doi.org/10.1016/j.ipl.2020.105937es
dc.rightsopenAccesses
dc.rights.holderAutores
dc.rights.texthttps://creativecommons.org/licenses/by/4.0/es
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subjectAdditive chromatic numberes
dc.subjectAdditive coloring conjecturees
dc.subjectLucky labelinges
dc.subjectGraph algorithmses
dc.subjecthttps://purl.org/becyt/ford/1.1es
dc.subjectInteger Programminges
dc.titleAppendix and source code of ACP solver for the paper On the additive chromatic number of several families of graphses
dc.typeother
dc.typeconjunto de datos
dc.typepublishedVersion

Archivos

Bloque original
Mostrando 1 - 5 de 15
Nombre:
9zwm2nxvbs-1.zip
Tamaño:
697.13 KB
Formato:
Unknown data format
Descripción:
Cargando...
Miniatura
Nombre:
appendix.pdf
Tamaño:
906.87 KB
Formato:
Adobe Portable Document Format
Descripción:
Nombre:
acopt.cpp
Tamaño:
20.88 KB
Formato:
Unknown data format
Descripción:
Nombre:
acopt.vcxproj
Tamaño:
5.44 KB
Formato:
Unknown data format
Descripción:
Nombre:
CompSplit.graph
Tamaño:
833 B
Formato:
Unknown data format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
Nombre:
license.txt
Tamaño:
3.59 KB
Formato:
Item-specific license agreed upon to submission
Descripción: